A Predictive Model for Mapping Crime Using Big Data Analytics
نویسنده
چکیده
Crime reduction and prevention challenges in today’s world are becoming increasingly complex and are in need of a new technique that can handle the vast amount of information that is being generated. Traditional police capabilities mostly fall short in depicting the original division of criminal activities, thus contribute less in the suitable allocation of police services. In this paper methods are described for crime event forecasting, using Hadoop, by studying the geographical areas which are at greater risk and outside the traditional policing limits. The developed method makes the use of a geographical crime mapping algorithm to identify areas that have relatively high cases of crime. The term used for such places is hot spots. The identified hotspot clusters give valuable data that can be used to train the artificial neural network which further can model the trends of crime. The artificial neural network specification and estimation approach is enhanced by processing capability of Hadoop platform. Keywords— Crime forecasting; Cluster analysis; artificial neural networks; Patrolling; Big data; Hadoop; Gamma
منابع مشابه
Big Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions
The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...
متن کاملAutomatic Crime Detector: A Framework for Criminal Pattern Detection in Big Data Era
In the era of “big data”, a huge number of people, devices, and sensors are connected via digital networks, and there is tremendous amount of data generated from their interactions every day. Effective processing and analysis of big data could reveal valuable knowledge that enable us to deal with emerging problems in a timely manner. However, rarely we can find big data analytics models and met...
متن کاملP-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy
The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...
متن کاملApplication of Big Data Analytics in Power Distribution Network
Smart grid enhances optimization in generation, distribution and consumption of the electricity by integrating information and communication technologies into the grid. Today, utilities are moving towards smart grid applications, most common one being deployment of smart meters in advanced metering infrastructure, and the first technical challenge they face is the huge volume of data generated ...
متن کاملA Fuzzy TOPSIS Approach for Big Data Analytics Platform Selection
Big data sizes are constantly increasing. Big data analytics is where advanced analytic techniques are applied on big data sets. Analytics based on large data samples reveals and leverages business change. The popularity of big data analytics platforms, which are often available as open-source, has not remained unnoticed by big companies. Google uses MapReduce for PageRank and inverted indexes....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015